Geology	Name	
Lab: Specific Gravity	Date	
Objective : To understand and apply the conc	ept of Specific Gravity	

**Specific Gravity represents the weight of a mineral in comparison to an equal volume of pure water. For example, a mineral with a specific gravity of 4 is four times as heavy as an equal volume of pure water. Specific Gravity is sometimes referred to as the density of a mineral.

Materials: 8 Minerals, graduated cylinder, scale, water

Procedure: 1. Determine the mass of the mineral

- 2. Use the water displacement method to determine the volume of the mineral. (One milliliter = one cubic centimeter of volume)
- 3. Use the formula D = M/V to determine the specific gravity of the mineral
- 4. Repeat this for two samples of EACH mineral. Complete the chart.

Mineral Name	Ma	ss (g)	Volume (cm		Specific Gravity (g/ cm ³	
		-			Sample 1	Sample 2
	Sample 1	Sample 2	Sample 1 S	Sample 2		
1. Quartz						
2. Galena						
3. Halite						
4. Calcite						
5. Pink Microline Feldspar						
6. Chalcopyrite						
7. Magnetite						
8. Hematite						

Questions:

- 1. List the minerals, by name, from lowest to highest specific gravity.
- 2. Why is the specific gravity of galena so much greater than the specific gravity of quartz?
- 3. If the sample of calcite was cut into two equal pieces, what would the density of each half be when compared to the density of the whole piece of calcite?
- 4. Compare your mineral densities with the listed density on page 666-667. List at least 3 factors would affect the difference in mineral density.

Mystery Cube Density Lab (Day 1)

Objective: To discover the identity of each cube based on its density.

Materials: Density cube set (9 cubes)

Hypothesis: If the mass and volume of a cube is found, then the density of the cube will determine the material of the cube.

Procedures:

- 1. Find the mass of each cube using a balance and record results in the data table.
- 2. Find the volume of each cube (Length x Width x Height) and record results in the data table.
- 3. Calculate the density by dividing the mass by the volume and record results in the data table.
- 4. Identify the mystery cubes based on their densities from the chart below.

Known values for cube densities (g/cm³)

Acrylic = 1.1 - 1.2	Pine = 0.45
Aluminum $= 2.7$	Polypropylene = $0.90 - 0.92$
Brass = 8.5	PVC = 1.4
Copper = 8.9	Steel = 7.9
Oak = 0.6 - 0.9	

Results:

Cube #	Mass (g)	Volume (cm ³)	Density (g/cm ³)	Identity
1				
2				
3				
4				
5				
6				
7				
8				
9				

Conclusion:

- 1. What determines whether a cube will float or sink in water?
- 2. Which cubes would sink in water?
- 3. Which cubes would float in water?
- 4. Describe how you determined the volume of the cubes.
- 5. Describe how you found the density for each cube.